Reconfigurable Polarization Slot Antenna



The annular slot antenna is then made polarization reconfigurable through an innovative excitation of the slot modes by replacing the shorting tabs with four pairs of the PIN diodes. These dynamically switch between two orthogonal linear polarizations by changing the dc control current at the antenna RF port through an external bias tee. Polarization-Reconfigurable Antenna,' IEEE Antennas and Wireless Propagation Letters, vol. 1557-1560, 2017. Wong, 'Wideband Circular-Polarization Reconfigurable Antenna With L-Shaped Feeding Probes,' IEEE Antennas and Wireless Propagation Letters, vol. 2114-2117, 2017. In this communication, a microfluidically frequency- and polarization-reconfigurable slot antenna using liquid metal (LM) is proposed. The polydimethylsiloxane (PDMS) structure with narrow-banded microchannels is loaded on the printed circuit board (PCB) of a square slot antenna, providing condition for reconfiguration. POLARIZATION RECONFIGURABLE SLOT ANTENNA FOR INDOOR MIMO SYSTEM Yue Li, Zhijun Zhang, Jianfeng Zheng, and Zhenghe Feng State Key Lab of Microwave and Communications, Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China; Corresponding author: [email protected] Received 24 August 2010.

Reconfigurability is a vital feature of future agile millimeter wave systems for sensing, imaging, wireless, and satellite communications. Reconfigurable antennas are an integral part of such systems as they can control polarization, frequency, radiation pattern, or characteristic impedance.

Paraffin-Based Reconfigurable Components at Millimeter Wave

Figure 1: Multiphysiscs simulation results for Von Mises stress and temperature distribution of the paraffin PCM actuator for input voltage of 2 V.

The main goal of this project is to design low-loss millimeter wave (mmW) RF components using novel materials such as paraffin. Alkane or paraffin is an organic phase change material (PCM) that exhibits low a dielectric loss, (tan⁡δ=6.6E-4 at 110 GHz), with a relative dielectric constant of 2.26. Paraffin is also a mechanical PCM that undergoes a 15% volumetric change through its solid-liquid phase change.

Due to its unique electrical and mechanical properties, paraffin PCM variable capacitors are very attractive for designing reconfigurable antennas and distributed loaded line phase shifters at mmW band.

Figure 2: Micrograph of the fabricated reconfigurable antenna.

In our group, we have developed a continuously reconfigurable antenna at 100 GHz by monolithically integrating the paraffin PCM capacitors with a slot antenna. Designed antenna has a reconfiguration range of 96–102.2 GHz with a maximum gain of 3 dBi. (Figures 1—2)

In addition, we have also developed a distributed loaded line phase shifter based on a new class of electro-thermally actuated RF MEMS devices using paraffin PCM. Designed phase shifter has a figure-of merit of 71.8°/dB achieved while maintaining a return loss more than 12 dB.

Figure 3: Multiphysiscs simulation results for Von Mises stress and temperature distribution of the paraffin PCM actuator for input voltage of 5 V. Designed phase shifter has a maximum insertion loss of 5 dB for a 360° of phase shift. (Figure 3)

© Prof. Nima Ghalichechian's Group

Related Papers

B. Ghassemiparvin and N. Ghalichechian, “Reconfigurable Millimeter-wave Antennas using Paraffin Phase Change Materials,” European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10-15 Apr, 2016. DOI:https://doi.org/10.1109/EuCAP.2016.7481595 (Download PDF)

B. Ghassemiparvin and N. Ghalichechian, “Novel Paraffin-Based 100-GHz Variable Capacitors for Reconfigurable Antennas,' European Conference on Antennas and Propogation (EuCAP), Paris, France, 19-24 Mar, 2017.DOI:https://doi.org/10.23919/EuCAP.2017.7928379(Download PDF)

B. Ghassemiparvin and N. Ghalichechian, 'W-Band True-Time Delay Phase Shifters Using Paraffin Microactuators,' European Conference on Antennas and Propogation (EuCAP), London, UK, 9-13 Apr, 2018.

Reconfigurable antenna using a pixel architecture capable of reconfiguring dynamically its frequency of operation, radiation pattern and polarization.[1]
Part of a series on
Antennas
  • International Telecommunication Union
    (Radio Regulations)
  • Massive Multiple-input multiple-output (MIMO)

Reconfigurable Polarization Slot Antenna Booster

A reconfigurable antenna is an antenna capable of modifying its frequency and radiation properties dynamically, in a controlled and reversible manner.[2] In order to provide a dynamic response, reconfigurable antennas integrate an inner mechanism (such as RF switches, varactors, mechanical actuators or tunable materials) that enable the intentional redistribution of the RF currents over the antenna surface and produce reversible modifications of its properties. Reconfigurable antennas differ from smart antennas because the reconfiguration mechanism lies inside the antenna, rather than in an external beamforming network. The reconfiguration capability of reconfigurable antennas is used to maximize the antenna performance in a changing scenario or to satisfy changing operating requirements.

Types of antenna reconfiguration[edit]

Reconfigurable antennas can be classified according to the antenna parameter that is dynamically adjusted, typically the frequency of operation, radiation pattern or polarization.[3]

Frequency reconfiguration[edit]

Polarization Reconfigurable Eccentric Annular Ring Slot Antenna Design

Frequency reconfigurable antennas can adjust their frequency of operation dynamically. They are particularly useful in situations where several communications systems converge because the multiple antennas required can be replaced by a single reconfigurable antenna. Frequency reconfiguration is generally achieved by physical or electrical modifications to the antenna dimensions using RF-switches,[4] impedance loading[5] or tunable materials.[6]

Radiation pattern reconfiguration[edit]

Reconfigurable Polarization Slot Antenna Signal Booster

Radiation pattern reconfigurability is based on the intentional modification of the spherical distribution of the radiation pattern. Beam steering is the most extended application and consists of steering the direction of maximum radiation to maximize the antenna gain in a link with mobile devices. Pattern reconfigurable antennas are usually designed using movable/rotatable structures[7][8] or switchable and reactively-loaded parasitic elements.[9][10][11] In the last 10 years, metamaterial-based reconfigurable antennas have gained attention due their small form factor, wide beam steering range and wireless applications.[12][13]Plasma antennas have also been investigated as alternatives with tunable directivities.[14][15][16]

Antenna

Polarization reconfiguration[edit]

Polarization reconfigurable antennas are capable of switching between different polarization modes. The capability of switching between horizontal, vertical and circular polarizations can be used to reduce polarization mismatch losses in portable devices. Polarization reconfigurability can be provided by changing the balance between the different modes of a multimode structure.[17]

Compound reconfiguration[edit]

Compound reconfiguration is the capability of simultaneously tuning several antenna parameters, for instance frequency and radiation pattern. The most common application of compound reconfiguration is the combination of frequency agility and beam-scanning to provide improved spectral efficiencies. Compound reconfigurability is achieved by combining in the same structure different single-parameter reconfiguration techniques[18][19] or by reshaping dynamically a pixel surface.[1][20]

Reconfiguration techniques[edit]

There are different types of reconfiguration techniques for antennas. Mainly they are electrical[21] (for example using RF-MEMS, PIN diodes, or varactors), optical, physical (mainly mechanical)[22][23], and using materials. For the reconfiguration techniques using materials, the materials could be solid, liquid crustal, liquids (dielectric liquid[24] or liquid metal).

See also[edit]

References[edit]

  1. ^ abRodrigo, D.; Cetiner, B.A.; Jofre, L. (2014). 'Frequency, Radiation Pattern and Polarization Reconfigurable Antenna Using a Parasitic Pixel Layer'. IEEE Trans. Antennas Propag. 62 (6): 3422. Bibcode:2014ITAP...62.3422R. doi:10.1109/TAP.2014.2314464.
  2. ^J.T. Bernhard. (2007). 'Reconfigurable Antennas'. Synthesis Lectures on Antennas. 2: 1–66. doi:10.2200/S00067ED1V01Y200707ANT004.
  3. ^G.H. Huff and J.T. Bernhard. (2008). 'Reconfigurable Antennas'. In C.A. Balanis (ed.). Modern Antenna Handbook. John Wiley & Sons.
  4. ^Panagamuwa, C.J.; Chauraya, A.; Vardaxoglou, J.C. (2006). 'Frequency and beam reconfigurable antenna using photoconducting switches'. IEEE Trans. Antennas Propag. 54 (2): 449. Bibcode:2006ITAP...54..449P. doi:10.1109/TAP.2005.863393.
  5. ^Erdil, E; Topalli, K; Unlu, M; Civi, O; Akin, T (2007). 'Frequency tunable microstrip patch antenna using RF MEMS technology'. IEEE Trans. Antennas Propag. 55 (4): 1193. Bibcode:2007ITAP...55.1193E. doi:10.1109/TAP.2007.893426.
  6. ^Liu, L.; Langley, R. (2008). 'Liquid crystal tunable microstrip patch antenna'. Electronics Letters. 44 (20): 1179. doi:10.1049/el:20081995.
  7. ^Chiao, J.C.; Fu, Y.; Chio, I.M.; DeLisio, M.; Li, L.Y. (1999). MEMS reconfigurable vee antenna. IEEE MTT-S International Microwave Symposium. 4. pp. 1515–1518. doi:10.1109/MWSYM.1999.780242. ISBN978-0-7803-5135-6.
  8. ^Rodrigo, D.; Jofre, L.; Cetiner, B.A. (2012). 'Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics'. IEEE Trans. Antennas Propag. 60 (4): 1796. Bibcode:2012ITAP...60.1796R. doi:10.1109/TAP.2012.2186235.
  9. ^Aboufoul, T.; Parini, C.; Chen, X.; Alomainy, A. (2013). 'Pattern-Reconfigurable Planar Circular Ultra-Wideband Monopole Antenna'. IEEE Trans. Antennas Propag. 61 (10): 4973. Bibcode:2013ITAP...61.4973A. doi:10.1109/TAP.2013.2274262.
  10. ^Harrington, R.F. (1978). 'Reactively controlled directive arrays'. IEEE Trans. Antennas Propag. 26 (3): 390–395. Bibcode:1978ITAP...26..390H. doi:10.1109/TAP.1978.1141852.
  11. ^Hum, S.V.; Perruisseau-Carrier, J. (2014). 'Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review'. IEEE Trans. Antennas Propag. 62 (1): 183. arXiv:1308.4593. Bibcode:2014ITAP...62..183H. doi:10.1109/TAP.2013.2287296.
  12. ^Mookiah, P.; Dandekar, K.R. (2009). 'Metamaterial-substrate antenna array for MIMO communication system'. IEEE Transactions on Antennas and Propagation. 57 (10): 3283. Bibcode:2009ITAP...57.3283M. doi:10.1109/TAP.2009.2028638.
  13. ^Gulati, N.; Dandekar, K.R. (2014). 'Learning State Selection for Reconfigurable Antennas: A multi-armed bandit approach'. IEEE Transactions on Antennas and Propagation. 62 (3): 1027. Bibcode:2014ITAP...62.1027G. doi:10.1109/TAP.2013.2276414.
  14. ^Borg, Gerard G.; Harris, Jeffrey H. (24 May 1999). 'Application of plasma columns to radiofrequency antennas'. Applied Physics Letters. 74 (22): 3272–3274. Bibcode:1999ApPhL..74.3272B. doi:10.1063/1.123317.
  15. ^Kumar, Rajneesh; Bora, Dhiraj (3 March 2010). 'A reconfigurable plasma antenna'. Journal of Applied Physics. 107 (5): 053303–053303–9. Bibcode:2010JAP...107e3303K. doi:10.1063/1.3318495.
  16. ^Alexeff, I.; et al. (18 April 2006). 'Experimental and theoretical results with plasma antennas'. IEEE Transactions on Plasma Science. 34 (2): 166–172. Bibcode:2006ITPS...34..166A. doi:10.1109/TPS.2006.872180.
  17. ^Simons, R.N.; Donghoon, C.; Katehi, L.P.B. (2002). Polarization reconfigurable patch antenna using microelectromechanical systems (MEMS) actuators. IEEE Antennas Propag. Soc. Int. Symp. 2. pp. 6–9. doi:10.1109/APS.2002.1016015. hdl:2060/20020063517. ISBN978-0-7803-7330-3.
  18. ^X.S., Yang; Wang, B.Z.; Wu, W.; Xiao, S. (2007). 'Yagi Patch Antenna With Dual-Band and Pattern Reconfigurable Characteristics'. IEEE Antennas Wirel. Propag. Lett. 6 (11): 168. Bibcode:2007IAWPL...6..168Y. doi:10.1109/LAWP.2007.895292.
  19. ^Aboufoul, T.; Chen, X.; Parini, C.; Alomainy, A. (2014). 'Multiple-parameter reconfiguration in a single planar ultra-wideband antenna for advanced wireless communication systems'. IET Microwaves, Antennas & Propagation. 8 (11): 849–857. doi:10.1049/iet-map.2013.0690.
  20. ^Pringle, L.N.; et al. (2004). 'A reconfigurable aperture antenna based on switched links between electrically small metallic patches'. IEEE Trans. Antennas Propag. 52 (6): 1434–1445. Bibcode:2004ITAP...52.1434P. doi:10.1109/TAP.2004.825648.
  21. ^Panagamuwa, C.J.; Chauraya, A.; Vardaxoglou, J.C. (2006). 'Frequency and beam reconfigurable antenna using photoconducting switches'. IEEE Trans. Antennas Propag. 54 (2): 449. Bibcode:2006ITAP...54..449P. doi:10.1109/TAP.2005.863393.
  22. ^Chiao, J.C.; Fu, Y.; Chio, I.M.; DeLisio, M.; Li, L.Y. (1999). MEMS reconfigurable vee antenna. IEEE MTT-S International Microwave Symposium. 4. pp. 1515–1518. doi:10.1109/MWSYM.1999.780242. ISBN978-0-7803-5135-6.
  23. ^Rodrigo, D.; Jofre, L.; Cetiner, B.A. (2012). 'Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics'. IEEE Trans. Antennas Propag. 60 (4): 1796. Bibcode:2012ITAP...60.1796R. doi:10.1109/TAP.2012.2186235.
  24. ^Motovilova, Elizaveta; Huang, Shao Ying. 'A Review on Reconfigurable Liquid Dielectric Antennas'.Cite journal requires |journal= (help)

Reconfigurable Polarization Slot Antenna Tuner

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Reconfigurable_antenna&oldid=979432970'